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Abstract

In this paper, the dynamic response of a double-beam system traversed by a constant moving load is studied. The system

consists of two elastic homogeneous isotropic Euler–Bernoulli beams. The two simply supported prismatic beams are

identical, parallel one upon the other and connected continuously by a viscoelastic layer. The dynamic deflections of both

beams are given in analytical closed forms. The effects of the moving speed of the load and the damping and the elasticity

of the viscoelastic layer on the dynamic responses of the beams are investigated in detail. Also several plots of the

deflections of the beams are given and discussed for different values of speed parameter, damping ratio, and stiffness

parameter. Furthermore, the force transmitted between the beams is determined and the effects of the system parameters

on this force are studied. Plots of the maximum responses of the beams are presented.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Beams are very important elements in civil, mechanical, and aeronautical engineering. The vibration
problem of single beams is very good developed and explored in details in hundreds of contributions. On the
other hand, there are only few contributions dealing with the vibrations of double-beam systems, because of
the difficulty in solving the governing coupled partial differential equations.

Oniszczuk [1] studied the free vibrations of two parallel simply supported beams continuously joined by a
Winkler elastic layer. The eigenfrequencies and mode shapes of vibration of the considered double-beam
system have been found using the classical assumed mode summation. Also the presented theoretical analysis
is illustrated by a numerical example, in which the effect of physical parameters characterizing the vibrating
system on the natural frequencies is investigated. Vu et al. [2] presented an exact method for solving the
vibration of a double-beam system subjected to a harmonic excitation. The studied system consists of a main
beam with an applied force, and an auxiliary beam, with a distributed spring and dashpot in parallel between
the two beams. Oniszczuk [3] analyzed undamped forced transverse vibrations of an elastically connected
simply supported double-beam system. The modal expansion method is applied to ascertain dynamic
responses of beams due to arbitrarily distributed continuous loads. Several cases of excitation loading are
investigated. Shamalta and Matrikine [4] investigated the steady-state dynamic response of an embedded
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Double-beam system.
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railway track to a moving train. The model for the track consists of a flexible plate performing vertical
vibrations, two beams that are connected to the plate by continuous viscoelastic elements and an elastic
foundation that supports the plate. Two harmonic loads that move uniformly along the beams describe the
train load. The plate, the beams and the elastic foundation are employed to model a concrete slab of
an embedded track, the rails and the ground reaction, respectively. Double-beam systems interconnected
only at discrete points are investigated in Refs. [5,6]. Also double-string and double-rod systems are studied in
Refs. [7–9].

In this paper, the dynamic behavior of a double-beam system traversed by a constant moving load is
studied. The system is composed of two elastic prismatic homogeneous isotropic Euler–Bernoulli beams as
shown in Fig. 1. The beams are parallel one upon the other arranged and connected continuously by a
viscoelastic layer. This layer is modeled as a distributed spring–damper system. The top beam is traversed by a
load and is designated as the primary beam. The bottom beam is designated as the secondary beam. In
general, the two beams may be different and differently supported. But in order to decouple the governing
partial differential equations in a simple way, two restrictions are made: (a) the beams must be identical and
(b) the boundary conditions of the same side of the system must be the same [2]. The system studied in this
paper consists of two identical simply supported beams. The dynamic deflections of both beams are given in
analytical closed forms. The effects of the moving speed of the load and the damping and the elasticity of the
viscoelastic layer on the dynamic responses of the beams are investigated in detail. Also several plots of the
maximum responses of the beams versus a speed parameter are presented. Furthermore, the force transmitted
between the beams is determined and the effects of the system parameters on this force are studied.

2. Mathematical formulation

2.1. Mathematical model and governing equations

The transverse vibration of the double-beam system shown in Fig. 1 is governed by the two coupled partial
differential equations.

EIv00001 þ kðv1 � v2Þ þ rð_v1 � _v2Þ þ m€v1 ¼ f ðx; tÞ, (1)

EIv00002 þ kðv2 � v1Þ þ rð_v2 � _v1Þ þ m€v2 ¼ 0, (2)

where EI is the flexural rigidity of the beam, E is Young’s modulus of elasticity, I is the moment of inertia of
the cross-sectional area of the beam, m is the mass per unit length of the beam k is the spring constant of the
viscoelastic layer, r is the damping coefficient of the viscoelastic layer, and vi(x,t) is the transverse deflection of
the ith beam at position x and time t. A prime denotes differentiation with respect to position x and a dot
denotes differentiation with respect to time t.

The boundary conditions of the studied simply supported beams are

v1ð0; tÞ ¼ v2ð0; tÞ ¼ 0, (3)
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v1ðL; tÞ ¼ v2ðL; tÞ ¼ 0, (4)

EIv001ð0; tÞ ¼ EIv002ð0; tÞ ¼ 0, (5)

EIv001ðL; tÞ ¼ EIv002ðL; tÞ ¼ 0. (6)

In order to decouple Eqs. (1) and (2), let

vðx; tÞ ¼ v1ðx; tÞ þ v2ðx; tÞ. (7)

Thus,

v1ðx; tÞ ¼ vðx; tÞ � v2ðx; tÞ. (8)

Adding Eqs. (1) and (2) and considering Eq. (7) leads to

EIv0000 þ m€v ¼ f ðx; tÞ. (9)

Substituting Eq. (8) into Eq. (2) and considering Eq. (7) yields

EIv00002 þ 2kv2 þ 2r_v2 þ m€v2 ¼ f n
ðx; tÞ, (10)

where the forcing function f n
ðx; tÞ is defined as

f n
ðx; tÞ ¼ kvþ r_v. (11)

So, two uncoupled partial differential equations (Eqs. (9) and (10)) are obtained. These equations can be
easier solved than the coupled Eqs. (1) and (2). First, Eq. (9) is solved, then the obtained solution v(x,t) is
substituted into Eq. (11) to obtain the forcing function f n

ðx; tÞ in order to be able to solve Eq. (10). The
outcoming solution of this equation represents the deflection v2(x,t) of the secondary beam. The response
v1(x,t) of the primary beam may be then obtained from Eq. (8). Note that Eq. (10) is identical to the governing
partial differential equation of the forced vibration of an Euler–Bernoulli beam on a viscoelastic foundation,
whereas Eq. (9) is that of an undamped Euler–Bernoulli beam.

2.2. Solution of Eq. (9)

In modal form, v(x,t) may be given as

vðx; tÞ ¼
X1
n¼1

X nðxÞynðtÞ, (12)

where yn(t) is the generalized deflection of the nth mode and Xn(x) is the nth eigenfunction of a simply
supported beam defined as

X nðxÞ ¼ sin knx (13)

with

kn ¼
np
L

. (14)

Substituting Eq. (12) into Eq. (9) and then multiplying by Xj(x), and integrating with respect to x between 0
and L leads to

€yn þ o2
nyn ¼ QnðtÞ (15)

with the circular frequency of the nth mode

on ¼

ffiffiffiffiffiffi
kn

mn

s
¼ k2n

ffiffiffiffiffiffi
EI

m

s
, (16)
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where

kn ¼

Z L

0

EIX 0000n X n dx (17)

is the generalized stiffness of the nth mode and

mn ¼

Z L

0

mX 2
nðxÞdx ¼

mL

2
(18)

is the generalized mass of the nth mode.
A constant force P0 traversing the beam from the left-hand side with constant speed so that the load f(x,t) is

defined as

f ðx; tÞ ¼ P0dðx� ctÞ, (19)

where d(.) denotes the Dirac delta function. The generalized force associated with the nth mode is then given as

QnðtÞ ¼
1

mn

Z L

0

X nðxÞf ðx; tÞdx ¼
2P0

mL
sinðknctÞ. (20)

Assuming that the beams are originally at rest, i.e.

v1ðx; 0Þ ¼ v2ðx; 0Þ ¼ _v1ðx; 0Þ ¼ _v2ðx; 0Þ ¼ 0 (21)

the solution of Eq. (15) is then written as

ynðtÞ ¼

Z t

0

hnðt� tÞQnðtÞdt, (22)

where hn(t) is the impulse response function defined as

hnðtÞ ¼
sinont
on

tX0;

0 to0:

(
(23)

Substituting Eqs. (20) and (23) into Eq. (22) yields

ynðtÞ ¼
2P0

mLon

Z t

0

sinonðt� tÞ sin knctdt. (24)

Carrying out the integration and substituting the obtained result into Eq. (12) gives the solution of Eq. (9) in
the form

vðx; tÞ ¼
2P0

mL

X1
n¼1

sin knx

ðkncÞ2 � o2
n

knc

on

sinont� sin knct

� �
. (25)

Note that v(x,t) is independent on the layer damping.
2.3. Deflection of the secondary beam

Substituting Eq. (25) and its time derivative into Eq. (11) yields

f �ðx; tÞ ¼
2P0

mL

X1
n¼1

sin knxqnðtÞ, (26)

where

qnðtÞ ¼
1

ðkncÞ2 � o2
n

k
knc

on

sin ont� sin knct

� �
þ rknc cos ont� cos knct½ �

� �
. (27)
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Substituting Eq. (26) into Eq. (10) leads to

EIv00002 þ 2kv2 þ 2r_v2 þ m€v2 ¼
2P0

mL

X1
n¼1

sin knxqnðtÞ. (28)

Solving this equation yields the deflection v2(x,t) of the secondary beam. In modal form, v2(x,t) may be
given as

v2ðx; tÞ ¼
X1
n¼1

X 2nðxÞy2nðtÞ, (29)

where y2n(t) is the generalized deflection of the nth mode and X2n(x) is the nth normal mode defined as

X 2nðxÞ ¼ sin lnx (30)

with

ln ¼
np
L

. (31)

Substituting Eq. (29) into Eq. (28) and then multiplying by Xj(x), and integrating with respect to x between 0
and L leads to

€y2nðtÞ þ 2Onzn _y2nðtÞ þ O2
ny2nðtÞ ¼ Q�nðtÞ, (32)

where

On ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIl4n þ 2k

m

s
(33)

is the circular frequency of the nth mode and

zn ¼
r

mOn

(34)

is the damping ratio of the nth mode. The generalized force associated with the nth mode Q�n is given as

Q�nðtÞ ¼
1

mn

Z L

0

X 2jðxÞ
2P0

mL

X1
n¼1

sinðknxÞqnðtÞdx, (35)

where mn is the generalized mass as defined in Eq. (18). Carrying out the integration and using the
orthogonality relationship Z L

0

X nX k dx ¼ 0; nak (36)

leads to

Q�nðtÞ ¼
2P0

m2L
qnðtÞ, (37)

where qn(t) is defined in Eq. (27). Assuming the beams are originally at rest, the solution of Eq. (32) is then
written as

y2nðtÞ ¼

Z t

0

h�nðt� tÞQ�nðtÞdt, (38)

where h�nðtÞ is the impulse response function defined for 0 � zno1 as

h�nðtÞ ¼
1

Odn
e�znOnt sinOdnt; t � 0;

0; to0

(
(39)
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in which

Odn ¼ On

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2n

q
(40)

is the damped circular frequency of the nth mode. Substituting Eqs. (37) and (39) into Eq. (38) yields

y2nðtÞ ¼
2P0e

�znOnt

m2LOdn

Z t

0

eznOnt sinOdnðt� tÞqnðtÞdt. (41)

Carrying out the integration gives

y2nðtÞ ¼ a1n

knc

on

ða3na6n � a2na4nÞ cosontþ ða2na5n � a3na7nÞ sinont½ �

þ a1n ða8na12n � a10na13nÞ cos knctþ ða11na13n � a9na12nÞ sin knct½ �

þ a1n

knc

on

ða2na4n � a3na6nÞ þ ða10na13n � a8na12nÞ

� �
e�znOnt cosOdnt

� a1n

knc

on

ða2na5n þ a3na7nÞ � ða11na13n þ a9na12nÞ

� �
e�znOnt sinOdnt, ð42Þ

where

a1n ¼
P0

m2LOdn

1

ðkncÞ2 � o2
n

,

a3n ¼
1

ðznOnÞ
2
þ ðOdn þ onÞ

2
,

a3n ¼
1

ðznOnÞ
2
þ ðOdn þ onÞ

2
,

a4n ¼ znOnk � ðOdn � onÞron,

a5n ¼ znOnron þ ðOdn � onÞk,

a6n ¼ znOnk þ ðOdn þ onÞron,

a7n ¼ znOnron � ðOdn þ onÞk,

a8n ¼ znOnk � ðOdn � kncÞrknc,

a9n ¼ znOnrkncþ ðOdn � kncÞk,

a10n ¼ znOnk þ ðOdn þ kncÞrknc,

a11n ¼ znOnrknc� ðOdn þ kncÞk,

a12n ¼
1

ðznOnÞ
2
þ ðOdn � kncÞ2

,

a13n ¼
1

ðznOnÞ
2
þ ðOdn þ kncÞ2

. (43a2m)
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After substituting y2n(t) as given in Eq. (42) into Eq. (29), the deflection of the secondary beam is known.
The deflection of the primary beam is obtained from Eq. (8), where v(x,t) and v2(x,t) are given in Eqs. (25) and
(29), respectively.

2.4. The Force transmitted between the beams

The force transmitted between the two beams is defined as

F T ¼ kðv1 � v2Þ þ rð_v1 � _v2Þ. (44)

Using Eqs. (8), (25), (29), and (42) yields for the force transmitted:

F T ¼
P0

mL

X1
n¼1

sin knx

Odn

½a10na13n � a8na12n� cos knct½ þ ½a9na12n � a11na13n� sin knct

� ½a9na12n þ a11na13n�e
�znOnt sinOdnt

þ½a13na14n þ a12na15n�e
�znOnt cosOdnt

�
, ð45Þ

where a8n to a13n are defined in Eq. (43) and

a14n ¼ �kznOn þ rðO2
n þ OdnkncÞ,

a15n ¼ kznOn � rðO2
n � OdnkncÞ. (46a,b)

3. Results and discussion

In order to illustrate the obtained analytical solutions, the dimensionless deflections

v̄i ¼
vðL=2; sÞ

v0
; i ¼ 1; 2 (47)

versus the dimensionless time s are given for both beams where only the first term of summation is considered.
The symbol v0 designates the static deflection at mid-span of a simply supported beam loaded with a static
force P0 at point x ¼ L/2 and is defined as

v0 ¼
P0L3

48EI
. (48)

The dimensionless time is defined as

s ¼
ct

L
. (49)

Thus when s ¼ 0 the force is at the left-hand side of the beam and when s ¼ 1 the force is at the right-hand side
of the beam.

The constant force P0 enters the upper beam at rest from the left-hand side at position x ¼ 0 and moves to
the right with constant speed c. The effect of speed is represented by the dimensionless speed parameter a,
where

a ¼
c

ccr

, (50)

with the critical speed ccr defined as [10]

ccr ¼
o1L

p
, (51)

where

o1 ¼
p
L

� �2 ffiffiffiffiffiffi
EI

m

s
. (52)
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Fig. 2. Dimensionless dynamic deflection versus the normalized time for primary beam (v̄1) and secondary beam (v̄2) for a speed factor

a ¼ 0:1, (ai) b ¼ 0:1, (bi) b ¼ 1, (ci) b ¼ 10, (di) b ¼ 100, (ei) b ¼ 10 000, i ¼ 1; 2, (———) z ¼ 0, (- - - -) z ¼ 0:1, (— � — � —) z ¼ 0:5.
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The effect of the layer stiffness k is represented by the dimensionless parameter

b ¼
kL4

EI
. (53)

Fig. 2 shows the dimensionless deflections for the primary (v̄1) and secondary (v̄2) beams for a speed factor
a ¼ 0:1 and different values of damping ratio z and stiffness parameter b. From Figs. 2a1–e1 it is observable
that dependent on the dimensionless time s, the deflection v̄1 may be decreased or increased by increasing the
values of the damping ratio z. Also the absolute maximum value of v̄1 is reached short after the load crosses
the mid-span of the beam. Furthermore, the figures show that increasing the values of the stiffness parameter b
leads to a decrease in the dimensionless deflection v̄1, where values of b smaller than 0.1 or higher than 104

have irrelevant influence on the dimensionless deflection v̄1. In the absence of damping, very small values of b
means that the two beams are decoupled (weak elastic coupling). However, increasing the values of b leads
to increasing the coupling between the two beams where very high values of b leads to rigid-coupling of
the beams.

From Figs. 2a1–e1 it is noticeable that the values of v̄1 by rigid-coupling (2e1) are reduced down to 50% of
the values of v̄1 for the uncoupled system (2a1). Furthermore, the damping effect becomes smaller with
increasing the values of the stiffness parameter b.

Figs. 2a2–e2 show the dimensionless dynamic deflection v̄2 for the secondary beam. From these figures it is
observed that increasing the values of stiffness parameter b increases the deflection v̄2. Very high values of b
(Fig. 2e2) cause rigid-coupling between the two beams so that they vibrate together as a unit. Consequently,
the normalized deflection v̄2 equals v̄1 in this case.

For very small values of stiffness parameter b (Fig. 2-a2), which means weak elastic coupling, the
dimensionless deflection v̄2 is increased by increasing the values of the damping ratio z. That is because
increasing the values of z increases the coupling between the two beams so that higher mechanical energy will
be transmitted from the primary to the secondary beam. Consequently, the excitation forces acting on the
secondary beam are increased.

From Figs. 2a2–e2 it is observed that the effect of damping on the normalized deflection v̄2 becomes smaller
by increasing the values of the stiffness parameter b.

Fig. 3 shows dimensionless deflections for the primary (v̄1) and secondary (v̄2) beams for a speed factor
a ¼ 0:25 and different values of damping ratio z and stiffness parameter b. The figure shows that, in general,
the system behaves as in the case for a speed factor a ¼ 0:1. But from Fig. 3 it is observable that the absolute
maximum values of v̄1 and v̄2 occur at the time at which the load traversed ca. 40% of the beam’s length.
However the absolute maximum value of v̄2 occurs a little earlier for relative small values of b. Figs. 3a1–c1
show that the absolute maximum value of v̄1 occurs at a later time by increasing the damping ratio z. From the
figures it is furthermore observable that increasing the damping ratio may, depending on the dimensionless
time s, increases or decreases the values of v̄1. To be specific, from Fig. 3a1 it is evident to see that for values of
s between 0 and 0.5, increasing the values of z decreases the values of v̄1. However, for values of s between ca.
0.5 and ca. 0.8, increasing the values of z leads to an increase in the values of v̄1.

Fig. 3a2–c2 show that the absolute maximum value of v̄2 occurs at an earlier time by increasing the damping
ratio z.

Fig. 4 shows the dimensionless deflections for the primary (v̄1) and secondary (v̄2) beams for a speed factor
a ¼ 0:5 and different values of damping ratio z and stiffness parameter b. The figure shows that increasing the
values of the stiffness parameter b decreases the deflection v̄1. In the case of rigid-coupling (Fig. 4e1), the value
of v̄1 is reduced down to 50% of v̄1 for the uncoupled beam. Also as previously stated, the values of v̄1 may be
decreased or increased by increasing the values of damping ratio z. The absolute maximum value of v̄1 is
reached in the time interval in which the load travels between 0.5 and 0.7 of the beams span. This value is
delayed by increasing the value of the damping ratio z.

Fig. 4a2–e2 show that increasing the value of the stiffness parameter b increases the dimensionless deflection
v̄2. In the case of rigid-coupling, v̄2 equals v̄1. Furthermore, it is observed that the absolute maximum value of
v̄2 is reached after the load traversed 60% of the beam’s length, but before the load left the beam. This value
occurs earlier by increasing the value of the damping ratio.
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Fig. 3. Dimensionless dynamic deflection versus the normalized time for primary beam (v̄1) and secondary beam (v̄2) for a speed factor

a ¼ 0:25, (ai) b ¼ 0:1, (bi) b ¼ 1, (ci) b ¼ 10, (di) b ¼ 100, (ei) b ¼ 10 000, i ¼ 1; 2, (———) z ¼ 0, (- - - -) z ¼ 0:1, (— � — � —) z ¼ 0:5.
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Fig. 4. Dimensionless dynamic deflection versus the normalized time for primary beam (v̄1) and secondary beam (v̄2) for a speed factor
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Fig. 5 shows dimensionless deflections for the primary (v̄1) and secondary (v̄2) beams for a speed factor
a ¼ 1 and different values of damping ratio z and stiffness parameter b. The figure shows that, in general, the
system behaves as in the case for a speed factor a ¼ 0:5. Also for very small (decoupled) and very high (rigid-
coupled) values of the stiffness parameter b, the absolute maximum value of v̄1 is reached after the load
departs from the beam. For the case of elastic coupling, this value is reached short before the load left the
beam. That is because a variation of the stiffness parameter leads to a variation of the circular natural
frequency On, given in Eq. (33). Figs. 5a2–e2 show that the absolute maximum value of v̄2 is reached after the
load departs from the beam.

Fig. 6 shows the normalized maximum deflections of the primary beam v̄1;max ¼ v1;max=v0 and the secondary
beam v̄2;max ¼ v2;max=v0 versus the speed parameter a for different values of stiffness parameter b and damping
ratio z calculated at x ¼ L/2. From the Figure the following characteristics can be noted:
1.
 The maximum deflections v̄1;max and v̄2;max of a double-beam are smaller than v̄maxof a single beam as
presented by Fryba [10] and Pesterev [11].
2.
 For small values of stiffness parameter b, an increase in the damping leads to a decrease in v̄1;max of the
primary beam and an increase in v̄2;max of the secondary beam. However, for higher values of b, the system
behaves reversely.
3.
 Increasing the values of the stiffness parameter b leads to a decrease in v̄1;max and an increase in v̄2;max at the
same time.
4.
 For very high values of b, the maximum deflections v̄1;max and v̄2;max coincide with each other and take
values equal to 0:5v̄max of a single beam.

Fig. 7 shows the normalized force transmitted F̄T ¼ FT=P0 between the primary and secondary beams
calculated at x ¼ L/2 versus the dimensionless time s for different values of speed factor a, damping ratio z,
and stiffness parameter b. From the figure the following can be noted:
1.
 Increasing the damping leads to an increase in FT,max by relative small values of stiffness parameter b (Fig
7a–c) and to a decrease in FT,max by higher values of b (Fig. 7d–f).
2.
 By increasing the damping, the maximum value of the force transmitted FT,max occurs at an earlier time.

3.
 The effect of damping is high by small values of stiffness parameter and low by higher values of this

parameter.

4.
 In general, increasing the speed parameter leads to an increase in the maximum value of the force

transmitted.
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4. Conclusions
The dynamic response for a simply supported homogeneous isotropic double-beam system subject to a
moving constant load was investigated. The normalized deflections of both beams are obtained in closed
forms. Also several plots of the deflections of the beams are given and discussed. The effects of the moving
speed of the load and the damping and stiffness of the viscoelastic layer on the deflections of the beams are
explored. It is found that increasing the damping of the connecting viscoelastic layer may increases or
decreases the responses of the beams. However, this damping has negligible effect on the deflections of the
beams for very high values of the stiffness of the layer. Furthermore, it is found that increasing the stiffness of
the layer decreases the deflection of the beam on which the load travels (primary beam) and increases the
deflection of the secondary beam. In case of very high layer stiffness, both beams have the same deflection
since the beams are then rigid-coupled and behave as a unit. This deflection is half the dynamic deflection of a
single beam traversed by a constant load moving with a constant speed.
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